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CFMIP: Cloud Feedback Model Inter-comparison Project =

o

« Set up by Bryant McAvaney (BMRC), Herve Le Treut (LMD)
« WCRP Working Group on Coupled Modelling (WGCM)

« Systematic intercomparison of cloud feedbacks in GCMs
 +/-2K atmosphere only and 2xCQO2 ‘slab’ experiments

« Aim to identify key uncertainties

* Link climate feedbacks to cloud observations

« ISCCP simulator required (Klein & Jakob, Webb et al)

* Now have data for 13 GCM versions from 8 groups

» Website shows data available, publications, plans, etc.

* http://www.cfmip.net
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" Cloud Feedback Model Intercomparison Project

Please report any problems with this site to keith williams@ metoffice. cov.uk

Project Overview

Lead Co-ordinator: " Co-ordinator: Lisdin! —J
Detailed Project Description M.J. Webb 'W’ S. Bony Perie

Hadley Centre, Met Office, UK Laboratoire de Météorologie "r‘nlﬁ

E-mail: mark.webb@metoffice.gov.uk m Dynamique (LMD/IPSL), France [m'-'ﬁ
Diagnostic Subprojects E-mail: Sandrine. Bony @Imd.jussicu.fr
Project Advisor:
B.J. McAvaney
Bureau of Meteorology Research Centre
(BMRC), Australia

Co-ordinator:

R. Colman

Bureau of Meteorology Research Centre
(BMRC), Australia

Experimental Protocols

E-mail: r.colman@bom.gov.au E-mail: B.McAvaney@bom.gov.au
Data
Requirements
News
The ISCCP . . . . . .
imulator This section contains announcements about the CEFMIP project and website. Please email
simulator

keith.williams @ metoffice.gov.uk or mark.webb @ metoffice.gov.uk if you wish to add anything.

Project Extensions

June 2006 - CFMIP Publications
Participating Groups

Work under various CFMIP subprojects is now appearing in the literature. Please see our new
Data Available publications section. Mark Webb

FAQ
April 2006 - CFMIP Phases I and 11

Publications

By the time of the fifth IPCC Scientific Assessment we hope that the ISCCP simulator will be required
as standard in the IPCC experimental protocol. When this happens the current CFMIP experimental
protocol will be redundant. With this in mind we are now thinking about what CFMIP could do in future
to develop and apply new techniques for understanding and evaluating cloud climate feedbacks. These
ideas will eventually form CFMIP Phase II. It is expected that CFMIP Phase I will continue until the
time when daily ISCCP simulator diagnostics are required as standard in the AMIP and CMIP
experimental protocols. Further daily data are expected from IPSL, NCAR, and Environment Canada by
the end of 2006. Mark Webb =
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Comparison of +/= 2K and slab model experiments

Ringer et al, GRL 2006
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Changes in ISCCP.cloud types slab vs +/-2K

Ringer et al, 2006
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Bony and Dufresne GRL 2005
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Cloud Feedback Class Structure Cloud Feedback Class Structure Cloud Feedback Class Structure
UIUC dT= 2.32 BMRC dT= 2.75 GFDL dT= 2.92
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Models with
CFMIP cloud
feedback “classes”

over larger
areas have higher sensitivity
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Webb et al Climate Dynamics 2006 — CFMIP models =
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Climate sensitivity

Cloud liquid(2xCO2 -1xCO2 kg/kg) Cloud ice (1xCO2 kg/kg)
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A 0y, (hPa day™)

A g, (hPa day™)

Williams et al Climate Dynamics 2006 (CFMIP)
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composites against observations for 10
CFMIP/CMIP model versions. The five
models with smallest RMS errors tend to have
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Willilams and Tselioudis

In the cloud regime framework, the mean change in cloud radiative forcing can be thought of as having
contributions from:

*A change in the RFO (Relative Frequency of Occurrence) of the regime

*A change in the CRF (Cloud Radiative Forcing) within the regime (i.e. a change in the tau-CTP space
occupied by the cluster/development of different clusters).

nclusters nclusters nclusters

ACRF = E CRF: ARFO; + 2 RFO: ACRF: + E ARFO ACRF;
i=1 i=1 i=1

Difference in Model Obs. constr.  Model clim. Obs. constr.
Model ANCRF Wm™2/K) AX(Wm=2/K) A(Wm=2/K) Sens. (K) Clim. Sens. (K)
ECHAMS 0.49 1.21 0.72 3.3 5.6
HadSM3 0.17 1.06 0.89 3.5 4.2
HadSM4 0.03 1.00 0.97 3.7 3.8
HadGSM 1 -0.11 0.83 0.94 4.6 4.1
MIROC-lo -0.12 0.79 0.91 3.9 3.4
MIROC-hi -0.19 0.48 0.67 6.5 4.7
Range 0.73 0.30 3.2 2.2
Std. dev. 0.25 0.12 1.2 0.8




CFMIP Phase I continues...

Daily cloud diagnostics to be hosted by PCMDI

To be made available as a community resource
UKMO, MIROC, MPI, NCAR data currently in transit
IPSL, Env Canada promised later this year

Will allow many ISCCP cloud studies to be applied
to a representative selection of climate models

Will become part of standard IPCC diagnostic
protocol by time of AR5 (agreed by WGCM Sep 06)

© Crown copyright 2006 Page 13



CFMIP Phasell — looking further ahead

Co-ordinators: Mark Webb, Sandrine Bony, Rob Colman
Project advisor: Bryant McAvaney

Main objective : A better assessment of modelled
cloud-climate feedbacks for IPCC AR5

Understanding Evaluation
of modelled cloud-climate of model clouds
feedback mechanisms using observations

S

Assessment of

cloud-climate
feedbacks

© Crown copyright 2006 Page 14



CFMIP Phase Il — planned approach

Develop improved cloud diagnostic techniques in climate models :

- CFMIP CloudSat/CALIPSO simulator
- Cloud water budget / tendency terms
- 3 hourly data at key locations (ARM sites, GPCI )

Explore the sensitivities of cloud feedbacks to differing model
assumptions using idealised climate change experiments

Demonstrate the application of these techniques to the
understanding and evaluation of cloud climate feedbacks via pilot
studies

Organise a systematic cloud feedback model comparison with the
next generation of climate models (ideally by embedding suitable
cloud diagnostics in the AR5 experimental protocol.)

© Crown copyright 2006 Page 15



CFMIP CloudSat/CALIPSO simulator (C3S)

This is a modular cloud simulator framework which will
allow a number of cloud simulator modules to be
plugged into climate models via a standard interface.

This is currently under development in collaboration with
various groups:

- Hadley Centre (Alejandro Bodas-Salcedo,
Mark Webb, Mark Ringer)
- LLNL (Steve Klein, Yuying Zhang)
- LMD/IPSL (Marjolaine Chiriaco, Sandrine Bony)
- CSU (Johnny Lyo, John Haynes, Graeme Stephens)
- PNNL ( Roger Marchand )

© Crown copyright 2006 Page 16



C3S/CloudSat eomparison with UK NWP model

Alejandro Bodas-Salcedo

—= Transect trough a mature extra-tropical system
Strong signal from ice clouds
| Strong signal from precipitation

Cloud and precip not present in obs

From 2£06/07/07 1; 14:36. 003%\2006/07/07 15:21:00.000

Model Level

2006 Jul 7 (188) 14:14:02 UTC | 1A-AUX | Granule 1023 21 Time 15:21:01 15:17:50 | Lat 62.7 51.5 | Lon -40.7 -34.2 CIRA CloudSat DPC 2006 Jul 7 (188) 14:14:02 UTC | 1A-AUX | Granule 1023 20 Time 15:17:50 15:14:38 | Lat 51.540.1 |Lon-34.2-29.9 CIRA CloudSat DPC
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ACTSIM LIDAR comparison with GLAS / ICESat data

(M. Chiriaco LMD/IPSL)

from LMDZ outputs

Lidar signal simulated

= Evaluation of the vertical structure of the atmosphere in models,

at global scale

Indicates excessive reflectivities from cloud ice in this climate model




Cloud water budget / process diagnostics

(Tomoo Ogura NIES Japan)

0Qc(lig +1ice
Qe(liq )= Condensation + Precipitation + Ice-fall-in + Ice-fall-out

ot \ ), \ W,
~ ~

1) (2)

Cumulus , Conv.
mixing adjustment

(3) (4) (5)

- Transient response of terms (1)...(5) to CO2 doubling is monitored every year.

+ Advection +

- Terms showing positive correlation with cloud water response contribute
to the cloud water variation.

A oo
Qc response 0% Qc increase related to the
0 source term
0 ° R
+ Source term
M response
v P Qc decrease related to the
N (1)or...(5)
P source term
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Cloud water budget diagnosis in MIROC

(Tomoo Ogura NIES Japan)

Correlation coefficient (when positive)

ACloud water (2x002 1xco2, DJF) [Cloud water vs (1)Condens-Precip ]
sigma = | | | | |
0.2 | o - 0.2
0.6 e 0.6+
1.0 Se—2 1.0 s e——————— e l'
90S 608 30S EQ 30N 60N 90N 908 60S 308 EQ 3ON 60N 90N
contour=3e-6 [kg/kg] = , g
-1 0 1
cloud decrease increase

Decrease in mid-low level sub-tropical cloud water correlates with
decrease in large-scale condensation
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GCSS/WGNE Pacific Cross-section Intercomparison (GPCT)

Joao Teixeira teixeira@nurc.nato.int
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GPCT is a working group of the GEWEX Cloud System Study (6CSS)

Models and data are analyzed along a Pacific Cross section from
Stratocumulus, to Cumulus and to deep convection

Period: June-July-August 1998 and 2003
Time resolution: 0,3,6,9, 12,15, 18, 21 UTC




Mean GPCT liquid water cross section - JJA98

from three climate models

Is this too much
liquid water?

Too shallow -> fog

How deep should
the PBL be..?

Joao Teixeira teixeira@nurc.nato.int




Mean diurnal cycle: ISCCP cloud cover

Joao Teixeira teixeira@nurc.nato.int
peak values of Sc cloud
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JJA98 mean diurnal cycle: model low cloud cover

Joao Teixeira teixeira@nurc.nato.int

" Etltud\ﬂ‘(d e%}\) NR o8 og
o lfdg(degiees)y @ o

. latiude(d

SN IS
(]
w
o
©
N
N
N
[¢)]
-
o]
N
N

8
2*
\\\\\\\ -1
111111111111 (o] 3 6 9 12 15 18 21

hours (UTQ hours (UTC) hours (UTC)

¢ realistic diurnal
peak values too far to cycle: morning max
the south (around 26 N)




Proposed point'diagnostics for CFMIP Phase |l

- 3 hourly instantaneous model data

- 10-20 years of data to give stable statistics

- on a grid of locations covering the GPCI and TWP

- additional key locations (e.g. ARM sites, high latitudes)
- in AMIP and idealised climate change experiments

The aim is to align climate model diagnostics with those
in use in GCSS/ARM to encourage a wider group of
people to examine and criticise cloud feedbacks in
climate models

For example this would give insight into the impact of
diurnal cycle errors on cloud-climate feedbacks
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CFMIP Phase Il physics sensitivity tests

Sensitivity tests are proposed using the idealised climate
change experiments developed by Brian Soden:

i.e. AMIP and AMIP + composite CMIP SST anomaly

The aim is to quantify the impact of certain differences in
model formulation on cloud-climate feedbacks by
Implementing consistent treatments across models

Possible examples include:
- fixed liquid cloud water content and radiative properties

- consistent precipitation & mixed phase partitioning
- consistent boundary layer resolution
- consistent simple shallow convection scheme?

© Crown copyright 2006 Page 26



CFMIP Phase Il timescales

Concrete project proposal by Jan 2007

Aim for endorsement by WGCM and GEWEX SSG
in early 2007

Joint CFMIP/ENSEMBLES meeting Paris April 2007
Development of diagnostics / pilot studies 2007-2008

Systematic model inter-comparison with new model
versions 2008- (preferably as part of AR5 models)

© Crown copyright 2006 Page 27



Use of CERES/GERB products in CFMIP Pl

CFMIP Phase | — mostly ISCCP/ERBE/ISCCP_FD
All of the following will benefit CFMIP Phase II:

CERES SRBAVG GEO, SYN/AVG/ZAVG products
CERES/MODIS cloud retrievals
CloudSat/CALIPSO/CERES merged products
Surface + ATM + TOA products (e.g. SARB)
Diurnal cycle GEO/GERB data

The barriers are often in bringing the sampling and
statistical summaries from satellite products and
GCM diagnostics into line — e.g. providing

ISCCP D1-like tau-Pc histograms
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Hawail — California transect: March 2005

mark.webb@metoffice.gov.uk
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Cleaner separation‘of SW feedbacks

Taylor et al (in revision)

TOA \ a /7 A

(1-n)Ss

-7)S
surface #i-7)

Fig. 1: Schematic representation of a simple shortwave radiation model showing fluxes passing

through the atmosphere and being partially reflected on each pass, where S is the insolation, &

surface albedo, and y and u are the atmospheric scattering coefficient and transmissivity,
respectively. Wavelengths that are readily absorbed by the atmosphere are assumed to be

completely removed on the first pass, and the atmosphere is transparent to other wavelengths.

© Crown copyright 2006

APRP (Approximate
Partial Radiative
Perturbation) method
for separation of SW
cloud and non-cloud
feedbacks.

Validated against full

GFDL PRP

calculations courtesy
of B. Soden.

Similar to Yokohata
et al method but
with subtle
differences.
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Taylor et al SW APRP on CFMIP model data
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APRP method gives
a more positive

SW cloud feedback
and larger spread
than CRF method

This is because it
makes a cleaner
separation between
surface albedo and
cloud feedbacks

Michel Crucifix, Karl
Taylor, Mark Webb



Summary

A number of studies now point to low cloud feedbacks being
a key uncertainty in climate models

Daily cloud/radiation/ISCCP simulator diagnostics from
CFMIP Phase | will be available from PCMDI by the end of
the year

Reductions in uncertainty due to cloud feedbacks will require
links to observations and also understanding and criticism of
feedback mechanisms in models

CFMIP Phase Il is an opportunity to align diagnostics in a
range of models with those in use in GCSS/ARM/CPT

We hope to formalise our plans by the end of this year.
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Bony and Dufresne (2005)
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Deep and shallow convection weaken in the warmer
climate (consistent with Held and Soden 2006 )

Shallow convection typically detrains into two model layers
In present day, but one level in the warmer climate

If a certain amount of water vapour is detrained into a
single layer it will moisten that layer more than would be
the case if it was spread over two layers

May explain why HadSM3 stratiform cloud fraction
iIncreases with weakening shallow convection

Hence the negative low cloud feedback in HadSM3 may
be due to poor vertical resolution and so not credible
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Understanding Evaluation
of cloud feedbacks of cloud fields

Assessment Oi

climate change
cloud feedbacks

Requires: more cloud diagnostics from GCMs + enhanced scrutiny

CEMIP-II:

sEncourage the analysis of cloud feedback processes by a wider community !

- make cloud diagnostics more easily accessible to the community (daily cloud
diagnostics from CFMIP-1 to be available from PCMDI)

- strengthen the link between CMIP and CFMIP (e.g. by increasing the number of
cloud diagnostics in the outputs of coupled models, by running the ISCCP simulator)

»Organize climate physics sensitivity experiments + consistent implementation of

simplified physics (e.g. mixed-phase cloud feedback)
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Understanding Evaluation
of cloud feedbacks of cloud fields

ASSessment Oi

climate change
cloud feedbacks

How may we use our physical understanding of climate change cloud feedbacks and the
available model-data comparisons to define a “metrics” for cloud feedbacks?

CEMIP-II:

sExplore relationships between cloud evaluation tests and cloud-climate feedbacks
based on a wide diversity of diagnostics and approaches + a large number of GCMs

»Discuss the issue during a joint CFMIP/ENSEMBLES workshop in Paris (11-13 April 2007).
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CFMIP Phase ||

CFMIP Phase Il will aim to reduce uncertainty in cloud
feedbacks and climate sensitivity by developing further links
between feedbacks and observations and improving our
understanding of cloud feedback mechanisms by:

1. Developing better cloud diagnostics for models:
- CloudSat/CALIPSO simulator
- GCSS Pacific Cross Section (diurnal cycle, ...)
- Cloud budget/tendency diagnostics

2. Applying
2. Exploring sensitivities of feedbacks to model physics
e.g. low clouds, convective entrainment

3. Collaboration with Gewex/GCSS community
cen ¥ GCSS Pacific Cross Section (diurnal cycle, ...) ™7



Alternative experimental setups

Cess +/-2K fixed season experiments are not a
gquantitative guide to coupled model feedbacks
- no seasonal cycle

- no high latitude amplification of warming

Alternative options include:

- continuing use of mixed layer experiments

- re-running sections of AR4 coupled experiments
with extra diagnostics

- ‘patterned SST perturbation’ experiments as
developed by Brian Soden (possibly AMIP+)
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Proposed new.diagnostics for CFMIP Phase Il g’

erote

CFMIP Cloudsat/CALIPSO Simulator (C3S)
Sub-timestep information
- Cloud condensate budget terms

- Physics increments for temperature, humidity, etc

Detailed diagnostics at key locations as used in
GCSS/ARM studies (e.g GPCI)
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European CloudSystem study (EUROCS

Pacific Cross Section

A. P. SIEBESMA et al.
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cloud feedback model clouds/feedbacks
mechanisms using observations

Understanding '! Evaluating

S

Assessment of

cloud-climate
feedbacks

Develop better cloud diagnostics for climate models:

High frequency instantaneous diagnostics along
WGNE/GCSS GPCI and at ARM sites

CFMIP CloudSat/CALIPSO Simulator (C3S)



Understanding
of cloud feedbacks

Evaluation
of model clouds

Assessment Oi

cloud climate
feedbacks

Requires: process-level studies + model-data comparisons + new satellite data

sEmbed GCSS (e.g. high-frequency diagnostics at ARM sites, GEWEX Pacific Cross-
Section; evaluation of some specific cloud processes)

sDevelopment of a CEMIP CloudSat/CALIPSO Simulator (C3S) (including eventually

an A-train orbital simulator) -> will favor interactions with obs people!

-We would like the AR5 models to be run with the ISCCP/radar/lidar simulator, and the

CFMIP cloud diagnostics to be included into the list of standard outputs

© Crown copyright 2006
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Reducing uncertainty by understanding feedbacks ==

erote

1/ Try to understand how physical cloud climate
feedback processes are operating in models

2/ Ask ‘Is this behaviour credible?’

3/ Develop new schemes with more credible cloud-
climate feedback behaviour in mind

4/ Differences between model feedbacks may reduce in
the longer term

5/ Can help to focus attention on key physical
processes for cloud feedbacks
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Further links between feedbacks and observables ==

erote

New diagnostics will provide opportunities for
new links

e.g. CloudSat/CALIPSO data may constrain models
with strong mixed-phase cloud feedbacks
due to excessive amounts of cloud ice

This will be an ongoing area of research, and the

focus of a joint ENSEMBLES/CFMIP meeting in
Paris 11th-13th April 2007
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CEMIP CloudSat/CALIPSO simulator

Alejandro Bodas-Salcedg

Simulated CloudSat reflectivities from UKMO forecast model

The simulator consists of 5 90
steps:

1. Orbital simulation 0075

2. Sampling i

3. Preprocessing

4. Subgrid sampling of cloud 0
overlaps

5. Radar reflectivity calculated =30
using code provided by Matt
Rogers (CSU) Sl

-90
Outputs: 0 60 120 180 240 300 360

- Reflectivity from clouds and precipitation (without attenuation)
- Total reflectivity, accounting for attenuation by gases, clouds and precipitation

- Products obtained from inputs at gridbox and subgrid scales
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ACTSIM CALIPSO simulator
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CFMIP Phase ll C3S inter-comparison

Initially we will provide an A-train orbital simulator
to allow climate modellers to save model cloud

variables co-located with CloudSat/CALIPSO
overpasses

Initially sampled data would be submitted to CFMIP
and both simulators run centrally

As the approach matures we plan to integrate this

package with the ISCCP simulator so that it can be
run in-line as part of the model development cycle
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